3.396 \(\int (a+b \sec ^2(e+f x))^{3/2} \tan ^4(e+f x) \, dx\)

Optimal. Leaf size=214 \[ \frac {a^{3/2} \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{f}+\frac {\left (a^2-8 a b-b^2\right ) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{16 b f}-\frac {(a-b) \left (a^2+10 a b+b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{16 b^{3/2} f}+\frac {b \tan ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{6 f}+\frac {(7 a+b) \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{24 f} \]

[Out]

a^(3/2)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f-1/16*(a-b)*(a^2+10*a*b+b^2)*arctanh(b^(1/2)*ta
n(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/b^(3/2)/f+1/16*(a^2-8*a*b-b^2)*(a+b+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/b/f+
1/24*(7*a+b)*(a+b+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)^3/f+1/6*b*(a+b+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)^5/f

________________________________________________________________________________________

Rubi [A]  time = 0.48, antiderivative size = 214, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {4141, 1975, 477, 582, 523, 217, 206, 377, 203} \[ \frac {\left (a^2-8 a b-b^2\right ) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{16 b f}-\frac {(a-b) \left (a^2+10 a b+b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{16 b^{3/2} f}+\frac {a^{3/2} \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{f}+\frac {b \tan ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{6 f}+\frac {(7 a+b) \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{24 f} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[e + f*x]^2)^(3/2)*Tan[e + f*x]^4,x]

[Out]

(a^(3/2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/f - ((a - b)*(a^2 + 10*a*b + b^2)*ArcT
anh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(16*b^(3/2)*f) + ((a^2 - 8*a*b - b^2)*Tan[e + f*x]
*Sqrt[a + b + b*Tan[e + f*x]^2])/(16*b*f) + ((7*a + b)*Tan[e + f*x]^3*Sqrt[a + b + b*Tan[e + f*x]^2])/(24*f) +
 (b*Tan[e + f*x]^5*Sqrt[a + b + b*Tan[e + f*x]^2])/(6*f)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 477

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(d*(e*x)
^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1))/(b*e*(m + n*(p + q) + 1)), x] + Dist[1/(b*(m + n*(p + q) + 1
)), Int[(e*x)^m*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*((c*b - a*d)*(m + 1) + c*b*n*(p + q)) + (d*(c*b - a*d
)*(m + 1) + d*n*(q - 1)*(b*c - a*d) + c*b*d*n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && N
eQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 582

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
 x_Symbol] :> Simp[(f*g^(n - 1)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q
+ 1) + 1)), x] - Dist[g^n/(b*d*(m + n*(p + q + 1) + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*
f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*(f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rubi steps

\begin {align*} \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan ^4(e+f x) \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^4 \left (a+b \left (1+x^2\right )\right )^{3/2}}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\operatorname {Subst}\left (\int \frac {x^4 \left (a+b+b x^2\right )^{3/2}}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {b \tan ^5(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{6 f}+\frac {\operatorname {Subst}\left (\int \frac {x^4 \left ((a+b) (6 a+b)+b (7 a+b) x^2\right )}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{6 f}\\ &=\frac {(7 a+b) \tan ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{24 f}+\frac {b \tan ^5(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{6 f}-\frac {\operatorname {Subst}\left (\int \frac {x^2 \left (3 b (a+b) (7 a+b)-3 b \left (a^2-8 a b-b^2\right ) x^2\right )}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{24 b f}\\ &=\frac {\left (a^2-8 a b-b^2\right ) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{16 b f}+\frac {(7 a+b) \tan ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{24 f}+\frac {b \tan ^5(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{6 f}+\frac {\operatorname {Subst}\left (\int \frac {-3 b (a+b) \left (a^2-8 a b-b^2\right )-3 (a-b) b \left (a^2+10 a b+b^2\right ) x^2}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{48 b^2 f}\\ &=\frac {\left (a^2-8 a b-b^2\right ) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{16 b f}+\frac {(7 a+b) \tan ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{24 f}+\frac {b \tan ^5(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{6 f}+\frac {a^2 \operatorname {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}-\frac {\left ((a-b) \left (a^2+10 a b+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{16 b f}\\ &=\frac {\left (a^2-8 a b-b^2\right ) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{16 b f}+\frac {(7 a+b) \tan ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{24 f}+\frac {b \tan ^5(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{6 f}+\frac {a^2 \operatorname {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}-\frac {\left ((a-b) \left (a^2+10 a b+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{16 b f}\\ &=\frac {a^{3/2} \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}-\frac {(a-b) \left (a^2+10 a b+b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{16 b^{3/2} f}+\frac {\left (a^2-8 a b-b^2\right ) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{16 b f}+\frac {(7 a+b) \tan ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{24 f}+\frac {b \tan ^5(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{6 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 4.10, size = 258, normalized size = 1.21 \[ \frac {\tan (e+f x) \sec ^4(e+f x) \left (4 \left (3 a^2-24 a b-11 b^2\right ) \cos (2 (e+f x))+\left (3 a^2-38 a b+3 b^2\right ) \cos (4 (e+f x))+9 a^2-58 a b+17 b^2\right ) \sqrt {a+b \sec ^2(e+f x)}}{384 b f}+\frac {\cos ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \left (16 a^{3/2} b \tan ^{-1}\left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {-a \sin ^2(e+f x)+a+b}}\right )-\frac {(a-b) \left (a^2+10 a b+b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{\sqrt {b}}\right )}{4 \sqrt {2} b f (a \cos (2 e+2 f x)+a+2 b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[e + f*x]^2)^(3/2)*Tan[e + f*x]^4,x]

[Out]

((16*a^(3/2)*b*ArcTan[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]] - ((a - b)*(a^2 + 10*a*b + b^2)*A
rcTanh[(Sqrt[b]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]])/Sqrt[b])*Cos[e + f*x]^3*(a + b*Sec[e + f*x]^2)^
(3/2))/(4*Sqrt[2]*b*f*(a + 2*b + a*Cos[2*e + 2*f*x])^(3/2)) + ((9*a^2 - 58*a*b + 17*b^2 + 4*(3*a^2 - 24*a*b -
11*b^2)*Cos[2*(e + f*x)] + (3*a^2 - 38*a*b + 3*b^2)*Cos[4*(e + f*x)])*Sec[e + f*x]^4*Sqrt[a + b*Sec[e + f*x]^2
]*Tan[e + f*x])/(384*b*f)

________________________________________________________________________________________

fricas [A]  time = 7.52, size = 1777, normalized size = 8.30 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^4,x, algorithm="fricas")

[Out]

[1/192*(24*sqrt(-a)*a*b^2*cos(f*x + e)^5*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5
*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b
 + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 -
 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x +
 e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) - 3*(a^3 + 9*a^2*b - 9*a*b^2 - b^3)*sqrt(b)*cos(f*x + e)^5*log(((a^2
- 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*s
qrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) + 4*((3*a^2*b - 38*a*
b^2 + 3*b^3)*cos(f*x + e)^4 + 8*b^3 + 14*(a*b^2 - b^3)*cos(f*x + e)^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e
)^2)*sin(f*x + e))/(b^2*f*cos(f*x + e)^5), 1/96*(12*sqrt(-a)*a*b^2*cos(f*x + e)^5*log(128*a^4*cos(f*x + e)^8 -
 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2
*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*
(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)
*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) - 3*(a^3 + 9*a^2*b - 9*a*b^2
 - b^3)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/
cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e)^5 + 2*((3*a^2*b - 38*a*b^2 + 3*b^3)*co
s(f*x + e)^4 + 8*b^3 + 14*(a*b^2 - b^3)*cos(f*x + e)^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x +
e))/(b^2*f*cos(f*x + e)^5), -1/192*(48*a^(3/2)*b^2*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x +
e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x +
 e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e)))*cos(f*x + e)^5 + 3*(a^3 + 9*a^2*b - 9*a
*b^2 - b^3)*sqrt(b)*cos(f*x + e)^5*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*
((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) +
 8*b^2)/cos(f*x + e)^4) - 4*((3*a^2*b - 38*a*b^2 + 3*b^3)*cos(f*x + e)^4 + 8*b^3 + 14*(a*b^2 - b^3)*cos(f*x +
e)^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(b^2*f*cos(f*x + e)^5), -1/96*(24*a^(3/2)*b^2*
arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sq
rt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e
)^2)*sin(f*x + e)))*cos(f*x + e)^5 + 3*(a^3 + 9*a^2*b - 9*a*b^2 - b^3)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x +
 e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin
(f*x + e)))*cos(f*x + e)^5 - 2*((3*a^2*b - 38*a*b^2 + 3*b^3)*cos(f*x + e)^4 + 8*b^3 + 14*(a*b^2 - b^3)*cos(f*x
 + e)^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(b^2*f*cos(f*x + e)^5)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \tan \left (f x + e\right )^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^4,x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*tan(f*x + e)^4, x)

________________________________________________________________________________________

maple [C]  time = 1.91, size = 2757, normalized size = 12.88 \[ \text {Expression too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^4,x)

[Out]

1/48/f*sin(f*x+e)*(54*sin(f*x+e)*cos(f*x+e)^6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f
*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+co
s(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^
(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a*b
^2+22*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^3*a*b^2+17*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*co
s(f*x+e)^5*a^2*b-17*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^4*a^2*b-22*((2*I*a^(1/2)*b^(1/2)+a-b)/(
a+b))^(1/2)*cos(f*x+e)^2*a*b^2-21*sin(f*x+e)*cos(f*x+e)^6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(
1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x
+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e
),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a^2*b-27*sin(f*x+e)*cos(f*x+e)^6*2
^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(
1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e)
)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)
/(a+b)^2)^(1/2))*a*b^2-54*sin(f*x+e)*cos(f*x+e)^6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*c
os(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(
1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*
I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))
*a^2*b-3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^6*a^3+96*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*
a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2
)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/
2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2
)+a-b)/(a+b))^(1/2))*sin(f*x+e)*cos(f*x+e)^6*a^2*b+52*cos(f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b
^2-52*cos(f*x+e)^5*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b^2-38*cos(f*x+e)^7*((2*I*a^(1/2)*b^(1/2)+a-b)/(a
+b))^(1/2)*a^2*b+3*cos(f*x+e)^7*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b^2+38*cos(f*x+e)^6*((2*I*a^(1/2)*b^
(1/2)+a-b)/(a+b))^(1/2)*a^2*b-3*cos(f*x+e)^6*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b^2+3*((2*I*a^(1/2)*b^(
1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^7*a^3+8*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)*b^3-14*cos(f*x+e)
^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^3+14*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^3+3*c
os(f*x+e)^5*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^3-3*cos(f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)
*b^3+3*sin(f*x+e)*cos(f*x+e)^6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos
(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b)
)^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*
I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a^3-6*sin(f*x+e)*cos(f*x+e)^6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos
(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1
/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/
(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/
2)*b^(1/2)+a-b)/(a+b))^(1/2))*a^3+6*sin(f*x+e)*cos(f*x+e)^6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b
^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f
*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*
x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+
b))^(1/2))*b^3-3*sin(f*x+e)*cos(f*x+e)^6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)
+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x
+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*
b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b^3-8*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^3)*
((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(3/2)/(-1+cos(f*x+e))/(b+a*cos(f*x+e)^2)^2/cos(f*x+e)^3/((2*I*a^(1/2)*b^(1/2
)+a-b)/(a+b))^(1/2)/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \tan \left (f x + e\right )^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^4,x, algorithm="maxima")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*tan(f*x + e)^4, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int {\mathrm {tan}\left (e+f\,x\right )}^4\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)^4*(a + b/cos(e + f*x)^2)^(3/2),x)

[Out]

int(tan(e + f*x)^4*(a + b/cos(e + f*x)^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}} \tan ^{4}{\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)**2)**(3/2)*tan(f*x+e)**4,x)

[Out]

Integral((a + b*sec(e + f*x)**2)**(3/2)*tan(e + f*x)**4, x)

________________________________________________________________________________________